Let R be a commutative ring with identity and M be a unitaryR-module. A proper submodule N of M is 2- absorbing if r1, r2, r3 Î R, m Î M with r1r2r3m Î M implies r1r2m Î N or r1r3m Î N or r2r3m Î N. Let j: S (M) ® S (M) È {f} be a function where S (M) is the set of all submodules of M. We call a proper submodule No f M a j-2-absorbing submodule if r1, r2, r3 Î R, m Î M with r1r2r3m Î N -j (N) implies that r1r2m Î N or r1r3m Î N or r2r3m Î N. We want to extend 2-absorbing ideals to j-2-absorbing submodules and we show that j-2-absorbing submodules enjoy analogs of many of the properties of 2-absorbing ideals.